《复杂性中的思维》

下载本书

添加书签

复杂性中的思维- 第8部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
此引出了一个关键性问题,在其具有邻近终态的意义上,从邻近的起始态出发的轨迹是否是局域稳定的。在图2.13a中,时刻零的起始态的相状态区域Ro被矢量场的动力学拖到后来的时间t的区域Rt(当然,实际的大量数目的坐标在这种相空间的形象表示中必须忽略掉)。 
  在此情形中,相似的起始状态导致了相似的终态。这个假设不过是一种以哈密顿动力学语言描述的经典性因果关系原理:类似的原因将导致类似的结果。历史上,从莱布尼茨到麦克斯韦的哲学家和物理学家都相信这个因果关系原理,它似乎保证了测量过程的稳定性以及预测的可能性,而可以不管显著的不精确性差距。 
  值得注意的是,哈密顿表达式的表象允许一种关于经典动力系统的因果关系一般性陈述。由数学家刘维的著名定理,即在任何哈密顿动力学中,因而对于任何的保守动力系统,相空间的任一区域的体积都必定保持不变。结果是,在图2.13a中的起始区域Ro的大小,是任何哈密顿动力学都不可能使之增大的,如果我们把“大小”正确地理解为相空间的体积。但是,它的保守性并不排除,其起始区域的形状被扭曲并扩展到相空间的大范围(图2.13b)。 
   
  我们可以想像一下一滴墨水在容器里的水中扩散。相空间的可能扩散结果意味着,刘维定理不能保证轨迹的局域稳定性。起始数据中的一个非常小的变化,可能会引出结果有大的变化。大体力学和弹子球的多体问题仍然是长期不可计算的,尽管其动力学是确定论的。然而,刘维定理对于可以由哈密顿动力学从而也就是保守动力系统所显示的最终区域,意味着某些一般性结果。回忆一下,其起点有不同平衡点的有摩擦单摆(这不是保守系统)的相图2.8c。非保守系统有螺旋型的点吸引子(图2.14a),而保守系统具有不是吸引子的涡旋点(图2.14b)。 
   
  在图2.14a中,轨迹收缩到一个域点,而其起始区域的体积发生蟋缩。在图2.14b中,轨迹沿涡旋点旋转,起始区域的体积保持不变。因此,由刘维定理我们可以得出一般性结论:在任何保守系统中,吸引子都必须排除掉。起始区域的蜷缩效应,在极限环的轨迹中也容易形象地表示出来。由于同样的数学的先验理由,保守系统中也不可能有当作吸引子的极限环。 
  这些结果是由哈密顿系统的影响深远的数学定理首先导出的。我们必须意识到,像行星系统、单摆、自由落体等等保守的物理系统,只不过是哈密顿系统的一些经验应用。哈密顿系统是由一类特殊的数学方程(哈密顿方程)来定义。哈密顿系统的特征是从相应方程的数学理论推导出来的。结果是,用哈密顿系统来建立实在的模型,意味着我们可以从认识论上预测某些先验的特征,例如在此不可能存在静态平衡的极限点吸引子,也没有周期平衡的极限环吸引子。 
  从哲学上看,这种观点显然在某种变通的意义上与康德的认识论相符合。如果我们假定某些动力系统的数学框架,那么我们当然就可以对于我们的经验模型得出某些先验的陈述,而不涉及到它们在若干学科中的经验应用。但是康德的认识论和动力学研究方式在如下的意义上是不同的:不仅仅有一种范畴框架(例如牛顿系统),而且有多种系统来为实在建立模型也可以取得程度不一的成功。因此,把保守系统甚至运用于认知科学、经济科学中,也并非物理主义或还原主义。 
  哈密顿(保守)系统的进一步的推演认为,在此有不规则的。混沌的轨迹。在18世纪和19世纪,物理学家和哲学家都相信,大自然是由牛顿类型的或哈密顿类型的运动方程所确定的。如果现在事件的起始状态已经明确知道了,宇宙的未来和过去状态就至少原则上是可计算的。从哲学上看,这种信念由拉普拉斯妖形象化了,它如同一台没有物理局限的巨大计算机,可以贮存和计算出所有的必然状态。数学上,这种拉普拉斯妖的信念必须假定,经典力学中的系统是可积的,从而也就是可解的。1892年,彭加勒已经意识到,经典力学中的不可积的三体问题可能导致完全混沌的轨迹。大约60年以后,科尔莫哥洛夫(1954)、阿诺德(1963)和莫泽(1967)证明了他们的著名的KAM定理:经典力学的相空间的运动既非完全规则的也非完全无规的,但是轨迹的类型敏感地依赖于对于初始条件的选择。 
  由于天体力学是由经验上确证了的哈密顿系统的动力学模型,KAM定理拒绝了某些传统的关于“月上”世界的见解。天上,既非一个亚里士多德宇宙意义上的规则世界,也非一个拉普拉斯妖意义上的永恒的规则世界。显然,它不是上帝的居所。然而,它并非完全混沌的。天上,如哈密顿系统已经认识到的,具有或多或少的规则性和无规则性。比起前人的信念,它显得更像我们人类的日常生活。这点可能会激起作家们对于哈密顿系统的好奇心。但是,让我们先看一看一些数学事实。 
  可积系统的一个最简单例子是谐振子。在实践上,任何有n个自由度的可积系统的运动方程,等同于一组n个未耦合谐振子。相应的相空间是2n维的,其中有n个位置坐标,n个动量坐标。对于n=1的谐振子,我们得到了一个循环,对于n=2的两个谐振子得到一个环形圆纹曲面(对照图2.11d)。因此,n个可积运动的存在,把可积系统的2n维格空间的轨迹限制于n维流形中,其拓扑是一个n维环形圆纹曲面。对于两个自由度的和四维相空间的可积系统,轨迹可以形象地表示在环形圆纹曲面上。轨迹的封闭轨道,只有在两个相应的振荡子的频率比值是有理数时,才可以出现(图2.15)。对于无理数的频率比值,轨迹的轨道则决不会重复自己,而是无限地趋近环形圆纹曲面上的所有的点。 
   
  亨隆和海里斯于1964年研究了一个天体力学的不可积系统。此动力学模型由一对可积谐振子构成,它们之间有不可积的坐标立方项的耦合。如果模型的起始状态的两个位置坐标q1、q2和两个动量坐标p1、p2都是已知的,那么其总能量E就由相应的依赖于这些坐标的哈密顿函数H所确定。此系统的轨迹在四维相空间的一个三维超平面上移动,此超平面由H(q1,q2,p1,p2)=E来定义。 
  E的值可以用来研究规则运动和无规运动的共存,这种运动是KAM定理所预见了的。对于小的E值,动力系统是有规则的行为,而对于大的E值,它就变得混沌了。为了形象地表示出这种行为的变化,我们考虑具有二维平面坐标q1和q2的轨迹的截面(彭加勒映射)。对于E=1/24(图2.16a)和E=1/12(图2.16b),彭加勒映射显示出只有规则运动的有些变形的环形曲面的截面。在临界值E=1/9以上,绝大多数(但不是全部)环形曲面都消失了,不规则点也随机地出现了。对于E=1/8(图2.16c),彭加勒映射显示出一种规则运动和无规运动共存的过渡状态。对于E=1/6(图2.16d),运动就显出完全是无规的、混沌的。 
   
  如下的天体力学的三体问题中,给出了一个经验应用的例子,它是不可积的。图2.17中示意了木星运动对于围绕太阳运动的一颗小行星运动的扰动。 
   
  木星和该颗小行星被解释为两个具有一定频率的振荡子。按照KAM定理,小行星的稳定和不稳定的运动可以根据频率比值来加以区分。 
  一般地,我们必须意识到稳定的以及不稳定的轨迹都是数学上明确定义的。结果是,甚至不可积的多体问题也描述着确定论的世界模型。打一个比方,我们可以说,莱布尼茨和牛顿的上帝都毫无困难地预见了规则的和无规的轨迹,而毋需一步一步地计算其发展。观测到的混沌行为,既不是由于大量的自由度(一个天体的三体问题只有不多的自由度),也不是人类知识的不确定性。无规是由哈密顿方程的非线性引起的,其起始的封闭轨迹在相区域中指数地快速分开。由于其起始条件只可能以有限的精确度来测量,而误差是指数地快速增加,这些系统的长期行为是不可能预见的。因此,计算机辅助计算将随着改进了越来越多的测量数字而更快地推动此种误差。 
  天体力学、小行星世界、行星、恒星和星系的宏观世界,是由规则和无规行为共存所确定的。天上的确定论混沌虽非处处皆有,然而是局域可能的,因此可能引起在原则上不能排除的宇宙灾变。量子力学的微观世界,即光子、电子、原子和分子的量子世界中,情况又怎样呢?在量子世界中有混沌吗?为了回答这个问题,我们首先需要了解一些有关量子世界的客体的哈密顿系统和相空间的基本概念。 
  1900年,马克斯·普朗克提出,电磁振荡子仅仅以量子方式出现,其能量E对于频率。具有确定的关系E=hv,其中h是常数(“普朗克量子”)。在20世纪的物理学中,除了爱因斯坦的巨大光速常数c以外,普朗克的微小量子常数是大自然的第二个基本常数。普朗克关系得到了实验上的支持,例如黑体辐射实验的支持。1923年,路易斯·德布罗意提出,甚至物质粒子往往也具有波一样的行为。对于一个质量m的粒子,德布罗意的波动频率。满足普朗克关系。与爱因斯坦相对论中著名的定律E=mc2结合起来(“质量是能量的特殊状态因此可以通过辐射而转变为能量”),我们获得了一种关系:v通过hv=mc2而与m联系起来。于是,在量子世界,场的振动频率,依赖于普朗克常数和爱因斯坦常数,只以不连续的质量单位出现。显然,量子世界中的现象,既可以看作波也可以看作粒子。这就是所谓的波粒二象性,它在许多实验中得到了明确的证明,实验中根据所预备的试验条件,揭示了如光子或电子这样的量子系统的波动或粒子特征。 
  尼尔斯·玻尔在1913年引入了他的“行星”原子模型,该模型可以极为精确地解释观察到和测量到的不连续稳定能级和光谱频率。玻尔的规则要求,绕核运动轨道上的电子的角动量只能以h=h/2x的整倍数出现。他的成功的、但带有几分预设性的规则,仅仅提供了一种近似的几何模型,它必须从量子世界的动力学理论中推导出来,对应于可以解释开普勒的行星定律的牛顿和哈密顿经典力学。量子世界的动力学是由海森伯和薛定谔的量子力学奠定的,它成为了20世纪物理学的基础物质理论。 
  量子力学的基本概念可以启发式地引入,即以普朗克常数为基础考虑到进行必要的修改,从而类似于相应的哈密顿力学的概念。这个程序叫做玻尔对应原理(图2.18)。因此,在量子力学中,经典的矢量如位置或动量都必须用某些算符来代替,这些算符满足某种依赖于普朗克常数的非对易(非经典)关系。如果h消失(h→O),我们就获得众所周知的例如位置和动量的经典对易关系,它们允许我们对矢量进行任意精确的测量。量子力学中非对易关系的一个直接结果是海森伯不确定性原理△p△q≥h/2。如果一次测量中,位置q精确到△q,那么对于动量P的一个扰动是△P。因此,在量子世界中显然不存在轨迹或轨道,轨迹或轨道要求粒子具有精确的位置和动量的值。玻尔的流行的电子轨道只是一种极为粗略的几何形象化[2.29〕。 
      经典力学——————————————→量子力学 
               对应原理 
       ↑                     ↑ 
    经典的可     空…时(伽         非经典的 
    观测量代     利略的或         可观测量 
    数        相对论的         代数 
  图2。18玻尔对应原理 
  按照玻尔对应原理,哈密顿函数描述的经典系统,必须代之以用算符描述的量子系统(例如电子或光子),这里(对于位置和动量)使用的是算符而不是矢量。在经典物理学中,哈密顿系统的状态是由相空间的点来确定的。在量子力学中,恰当的类似概念是希尔伯特空间。量子系统的状态由希尔伯特空间的矢量来描述,其哈密顿算符的本征值决定了此希尔伯特空间的距离。 
  为了稍稍详尽一些说明这种数学的特点,让我们想像一粒量子微粒。在经典理论中,一粒微粒是由它的空间的位置和它的动量来确定的。在量子力学中,微粒可能具有的每一位置,都是所有位置的集合中的一种交换组合,其权重为复数。于是,我们得到了一个关于位置的复函数,即所谓的波函数Ψ(x)。每一位置x,Ψ(x)的值标志了该粒子在X处的波幅。在此位置的某个一定的小间隔中找到此粒子的几率,由波幅的平方模|Ψ(x)|2给出。各个可能的不同动量的波幅也是由波函数确定的。因此,希尔伯特空间是一个量子系统状态的复空间。 
  量子状态的因果动力学由偏微分方程来确定,这叫做薛定谔方程。经典可观测量是可对易的,与此相反,量子系统的非经典可观测量是不可对易的,一般没有共同的本征值,自然也就没有确定的本征值。对于量子状态的可观测量,只可能计算出统计的预期值。 
  薛定谔量子表达式的一个基本性质是叠加原理,这表明了它是线性的。例如,考虑两个发生相互作用的量子系统(例如一对以相反方向离开共同光源的光子)。甚至当它们在远距离处已没有物理相互作用时,它们也保留着共同的状态叠加性,这是不可能分离开或局域化的。在这样的关联的(纯的)量子叠加态,两个量子系统的某一个可观测量只可能有不确定的本征值。量子力学的叠加或线性原理提供了组合系统的相关的(关联的)状态,这已经在EPR实验中得到了高度的确证。从哲学上看,(量子)整体大于其部分之和。非局域
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架