《[免费下载 c语言深度解剖[1]》

下载本书

添加书签

[免费下载 c语言深度解剖[1]- 第16部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
excel
表,比如: 


chara'3''4';


4。5。1。2,内存与尺子的对比
实际上内存不是表状的,而是线性的。见过尺子吧?尺子和我们的内存非常相似。一
般尺子上最小刻度为毫米,而内存的最小单位为 
1个 
byte。平时我们说 
32毫米,是指以零
开始偏移 
32毫米;平时我们说内存地址为 
0x0000FF00也是指从内存零地址开始偏移 
0x0000FF00个 
byte。既然内存是线性的,那二维数组在内存里面肯定也是线性存储的。实
际上其内存布局如下图:

以数组下标的方式来访问其中的某个元素:a'i''j'。编译器总是将二维数组看成是一个
一维数组,而一维数组的每一个元素又都是一个数组。a'3'这个一维数组的三个元素分别为:
a'0';a'1';a'2'。每个元素的大小为 
sizeof(a'0');即 
sizof(char)*4。由此可以计算出 
a'0';a'1';a'2'
三个元素的首地址分别为&a'0',& 
a'0'+1*sizof(char)*4,& 
a'0'+2*sizof(char)*4。亦即 
a'i'
的首地址为& 
a'0'+i*sizof(char)*4。这时候再考虑 
a'i'里面的内容。就本例而言,a'i'内有 
4
个 
char类型的元素,其每个元素的首地址分别为&a'i',&a'i'+1*sizof(char), 
&a'i'+2*sizof(char),&a'i'+3*sizof(char),即 
a'i''j'的首地址为&a'i'+j*sizof(char)。再把 
&a'i' 



的值用 
a表示,得到 
a'i''j'元素的首地址为:a+i*sizof(char)*4+j*sizof(char)。同样,可以换
算成以指针的形式表示:*(*(a+i)+j)。

经过上面的讲解,相信你已经掌握了二维数组在内存里面的布局了。下面就看一个题: 


#include 


intmain(intargc;char* 
argv'') 


{ 


inta 
'3''2'={(0;1);(2;3);(4;5)}; 


int*p; 


p=a'0'; 


printf(〃%d〃;p'0'); 




问打印出来的结果是多少?

很多人都觉得这太简单了,很快就能把答案告诉我:0。不过很可惜,错了。答案应该
是 
1。如果你也认为是 
0,那你实在应该好好看看这个题。花括号里面嵌套的是小括号,而
不是花括号!这里是花括号里面嵌套了逗号表达式!其实这个赋值就相当于 
inta 
'3''2'={ 
1;3; 
5};

所以,在初始化二维数组的时候一定要注意,别不小心把应该用的花括号写成小括号
了。

4。5。1。3,&p'4''2' 
…&a'4''2'的值为多少?
上面的问题似乎还比较好理解,下面再看一个例子: 


int 
a'5''5'; 


int 
(*p)'4'; 


p=a;

问&p'4''2'…&a'4''2'的值为多少?
这个问题似乎非常简单,但是几乎没有人答对了。我们可以先写代码测试一下其值,然后分
析一下到底是为什么。在 
VisualC++6。0里,测试代码如下: 


intmain() 


{ 


inta'5''5'; 


int(*p)'4'; 


p= 
a; 


printf(〃a_ptr=%#p;p_ptr=%#pn〃;&a'4''2';&p'4''2'); 


printf(〃%p;%dn〃;&p'4''2'…&a'4''2';&p'4''2'…&a'4''2'); 


return0; 




经过测试,可知&p'4''2'…&a'4''2'的值为…4。这到底是为什么呢?下面我们就来分析一下:


前面我们讲过,当数组名 
a作为右值时,代表的是数组首元素的首地址。这里的 
a为二
维数组,我们把数组 
a看作是包含 
5个 
int类型元素的一维数组;里面再存储了一个一维数组。
如此,则 
a在这里代表的是 
a'0'的首地址。 
a+1表示的是一维数组 
a的第二个元素。 
a'4'表
示的是一维数组 
a的第 
5个元素,而这个元素里又存了一个一维数组。所以&a'4''2'表示的
是&a'0''0'+4*5*sizeof(int)+2*sizeof(int)。

根据定义,p是指向一个包含 
4个元素的数组的指针。也就是说 
p+1表示的是指针 
p向
后移动了一个“包含 
4个 
int类型元素的数组”。这里 
1的单位是 
p所指向的空间,即 
4*sizeof(int)。所以, 
p'4'相对于 
p'0'来说是向后移动了 
4个“包含 
4个 
int类型元素的数组”,
即&p'4'表示的是 
&p'0'+4*4*sizeof(int)。由于 
p被初始化为 
&a'0',那么 
&p'4''2'表示的是 
&a'0''0'+4*4*sizeof(int)+2* 
sizeof(int)。

再由上面的讲述,&p'4''2'和 
&a'4''2'的值相差 
4个 
int类型的元素。现在,上面测试
出来的结果也可以理解了吧?其实我们最简单的办法就是画内存布局图:


这里最重要的一点就是明白数组指针 
p所指向的内存到底是什么。解决这类问题的最
好办法就是画内存布局图。

4。5。2,二级指针
4。5。2。1,二级指针的内存布局
二级指针是经常用到的,尤其与二维数组在一起的时候更是令人迷糊。例如: 


char 
**p;

定义了一个二级指针变量 
p。p是一个指针变量,毫无疑问在 
32位系统下占 
4个 
byte。
它与一级指针不同的是,一级指针保存的是数据的地址,二级指针保存的是一级指针的地
址。下图帮助理解:



我们试着给变量 
p初始化: 


A),p 
= 
NULL; 
B),char*p2;p 
= 
&p2;
任何指针变量都可以被初始化为 
NULL(注意是 
NULL,不是 
NUL,更不是 
null),二
级指针也不例外。也就是说把指针指向数组的零地址。联想到前面我们把尺子比作内存,
如果把内存初始化为 
NULL,就相当于把指针指向尺子上 
0毫米处,这时候指针没有任何内
存可用。
当我们真正需要使用 
p的时候,就必须把一个一级指针的地址保存到 
p中,所以 
B)的
赋值方式也是正确的。
给 
p赋值没有问题,但怎么使用 
p呢?这就需要我们前面多次提到的钥匙(“*”)。

第一步:根据 
p这个变量,取出它里面存的地址。
第二步:找到这个地址所在的内存。
第三步:用钥匙打开这块内存,取出它里面的地址,*p的值。
第四步:找到第二次取出的这个地址。
第五步:用钥匙打开这块内存,取出它里面的内容,这就是我们真正的数据, 
**p的值。
我们在这里用了两次钥匙( 
“*”)才最终取出了真正的数据。也就是说要取出二级指针

所真正指向的数据,需要使用两次两次钥匙(“*”)。
至于超过二维的数组和超过二维的指针一般使用比较少,而且按照上面的分析方法同
样也可以很轻松的分析明白,这里就不再详细讨论。读者有兴趣的话,可以研究研究。

4。6,数组参数与指针参数
我们都知道参数分为形参和实参。形参是指声明或定义函数时的参数,而实参是在调
用函数时主调函数传递过来的实际值。

4。6。1,一维数组参数
4。6。1。1,能否向函数传递一个数组?
看例子: 


void 
fun(char 
a'10') 
{ 
charc 
= 
a'3'; 
} 



intmain() 


{ 


charb'10'= 
“abcdefg”; 


fun(b'10'); 


return0; 




先看上面的调用,fun(b'10');将 
b'10'这个数组传递到 
fun函数。但这样正确吗?b'10'
是代表一个数组吗?

显然不是,我们知道 
b'0'代表是数组的一个元素,那 
b'10'又何尝不是呢?只不过这里
数组越界了,这个 
b'10'并不存在。但在编译阶段,编译器并不会真正计算 
b'10'的地址并取
值,所以在编译的时候编译器并不认为这样有错误。虽然没有错误,但是编译器仍然给出
了两个警告: 


warningC4047: 
'function': 
'char*' 
differsinlevelsof 
indirectionfrom 
'char' 


warningC4024: 
'fun': 
differenttypesforformalandactualparameter1

这是什么意思呢?这两个警告告诉我们,函数参数需要的是一个 
char*类型的参数,而
实际参数为 
char类型,不匹配。虽然编译器没有给出错误,但是这样运行肯定会有问题。
如图:


这是一个内存异常,我们分析分析其原因。其实这里至少有两个严重的错误。

第一:b'10'并不存在,在编译的时候由于没有去实际地址取值,所以没有出错,但是
在运行时,将计算 
b'10'的实际地址,并且取值。这时候发生越界错误。

第二:编译器的警告已经告诉我们编译器需要的是一个 
char*类型的参数,而传递过去
的是一个 
char类型的参数,这时候 
fun函数会将传入的 
char类型的数据当地址处理,同样
会发生错误。(这点前面已经详细讲解)

第一个错误很好理解,那么第二个错误怎么理解呢? 
fun函数明明传递的是一个数组啊,
编译器怎么会说是 
char*类型呢?别急,我们先把函数的调用方式改变一下: 


fun(b); 


b是一个数组,现在将数组 
b作为实际参数传递。这下该没有问题了吧?调试、运行,
一切正常,没有问题,收工!很轻易是吧?但是你确认你真正明白了这是怎么回事?数组 
b 



真的传递到了函数内部?

4。6。1。2,无法向函数传递一个数组
我们完全可以验证一下: 


void 
fun(char 
a'10') 
{ 


int 
i 
= 
sizeof(a); 


charc 
= 
a'3'; 




如果数组 
b真正传递到函数内部,那 
i的值应该为 
10。但是我们测试后发现 
i的值竟然
为 
4!为什么会这样呢?难道数组 
b真的没有传递到函数内部?是的,确实没有传递过去,
这是因为这样一条规则: 


C语言中,当一维数组作为函数参数的时候,编译器总是把它解析成一个指向其首元
素首地址的指针。

这么做是有原因的。在 
C语言中,所有非数组形式的数据实参均以传值形式(对实参
做一份拷贝并传递给被调用的函数,函数不能修改作为实参的实际变量的值,而只能修改
传递给它的那份拷贝)调用。然而,如果要拷贝整个数组,无论在空间上还是在时间上,
其开销都是非常大的。更重要的是,在绝大部分情况下,你其实并不需要整个数组的拷贝,
你只想告诉函数在那一刻对哪个特定的数组感兴趣。这样的话,为了节省时间和空间,提
高程序运行的效率,于是就有了上述的规则。同样的,函数的返回值也不能是一个数组,
而只能是指针。这里要明确的一个概念就是:函数本身是没有类型的,只有函数的返回值
才有类型。很多书都把这点弄错了,甚至出现“XXX类型的函数”这种说法。简直是荒唐
至极!

经过上面的解释,相信你已经理解上述的规定以及它的来由。上面编译器给出的提示,
说函数的参数是一个 
char*类型的指针,这点相信也可以理解。

既然如此,我们完全可以把 
fun函数改写成下面的样子: 


void 
fun(char 
*p) 


{ 


charc 
= 
p'3';//或者是 
charc 
= 
*(p+3); 




同样,你还可以试试这样子: 


void 
fun(char 
a'10') 


{ 


charc 
= 
a'3'; 


} 



intmain() 


{ 
charb'100'= 
“abcdefg”; 
fun(b); 


return0; 



运行完全没有问题。实际传递的数组大小与函数形参指定的数组大小没有关系。既然
如此,那我们也可以改写成下面的样子: 


void 
fun(char 
a' 
') 
{ 
charc 
= 
a'3'; 

改写成这样或许比较好,至少不会让人误会成只能传递一个 
10个元素的数组。

4。6。2,一级指针参数
4。6。2。1,能否把指针变量本身传递给一个函数
我们把上一节讨论的列子再改写一下: 


void 
fun(char 
*p) 
{ 
charc 
= 
p'3';//或者是 
charc 
= 
*(p+3); 
} 


intmain() 


{ 
char*p2 
= 
“abcdefg”; 
fun(p2); 
return0; 



这个函数调用,真的把 
p2本身传递到了 
fun函数内部吗?
我们知道 
p2是 
main函数内的一个局部变量,它只在 
main函数内部有效。(这里需要

澄清一个问题:main函数内的变量不是全局变量,而是局部变量,只不过它的生命周期和


全局变量一样长而已。全局变量一定是定义在函数外部的。初学者往往弄错这点。)既然它
是局部变量,fun函数肯定无法使用 
p2的真身。那函数调用怎么办?好办:对实参做一份
拷贝并传递给被调用的函数。即对 
p2做一份拷贝,假设其拷贝名为_p2。那传递到函数内
部的就是_p2而并非 
p2本身。

4。6。2。2,无法把指针变量本身传递给一个函数
这很像孙悟空拔下一根猴毛变成自己的样子去忽悠小妖怪。所以 
fun函数实际运行时,
用到的都是_p2这个变量而非 
p2本身。如此,我们看下面的例子: 
voidGetMemory(char* 
p;intnum) 
{ 
p 
= 
(char*)malloc(num*sizeof(char)); 
} 


intmain() 


{ 


char*str= 
NULL; 


GetMemory(str,10); 


strcpy(str;”hello”); 


free(str);//free并没有起作用,内存泄漏 


return0; 

在运行 
strcpy(str;”hello”)语句的时候发生错误。这时候观察 
str的值,发现仍然为 
NULL。
也就是说 
str本身并没有改变,我们 
malloc的内存的地址并没有赋给 
str,而是赋给了_str。
而这个_str是编译器自动分配和回收的,我们根本就无法使用。所以想这样获取一块内存是

不行的。那怎么办?两个办法:

第一:用 
return。 


char* 
GetMemory(char* 
p;intnum) 


{ 


p 
= 
(char*)malloc(num*sizeof(char)); 
returnp; 
} 


intmain() 
{ 



char*str= 
NULL; 
str=Ge
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架