《打开原子的大门》

下载本书

添加书签

打开原子的大门- 第8部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
  真是怪事!铂氰酸钡是一种荧光物质,只有在强光照射下才会发出荧光。现在荧光屏发光,显然和阴极射线管有关。但是,阴极射线管发的光很弱,并且已经被厚的黑纸包了起来,荧光屏怎么还会发光呢?况且这荧光屏还在两米以外。
  伦琴想试试是不是有什么光线从阴极射线管发出来照在荧光屏上。他把手伸在荧光屏和阴极射线管之间。果然,在荧光屏上出现了手的影子。但是仔细一看,伦琴大吃一惊!在很淡的手影之中还显出了黑色的手的骨骼的影子。手动一动,影子也动一动,骨骼也在动,非常清楚!
  面对着这个新发现,伦琴激动极了,他也不想回家了,在实验室里用各种东西放在这看不见的射线中间试验,一直搞到天亮。他发现纸片以至厚木板都挡不住这种射线,只有较厚的铅片才能把它完全挡住。
  现在他清楚了,放在抽屉中的照相底片所以会感光,是因为木板和纸挡不住这种穿透力极强的射线。
  伦琴几乎整天在实验室中研究这新的射线,回家也在讲他的发现。1895年12月22日,他妻子到实验室来看他的新发现。他从别的实验室拿来一片用黑纸包好的照相底片,放在阴极射线管旁边,让他妻子把手按在底片上,接着他把阴极射线管的电源接通了一会,然后把底片拿去冲洗。冲好的照相底片使他的妻子大吃一惊,这是一只手的骨骼的照片,手上戴的金戒指也显得一清二楚! 对于这种看不见的射线,伦琴开始认为是穿透了玻璃管壁跑了出来的阴极射线。他用磁铁去试了一试,这种看不见的射线没有偏转,说明它不是阴极射线。他又猜想可能是一种光线,便让这种射线通过三棱镜,结果证明它和普通的光线不同,三棱镜不能使它发生折射。真是一种性质未知的奇妙射线!
  伦琴想起了代数中的未知数常用X来表示,所以,他把这未知性质的射线起名叫做X射线。
  伦琴把他的发现写成论文,于1895年12月28日在德国的科学杂志上发表了。伦琴的发现立刻震动了世界,不仅在科学界,社会上也轰动了,各种报纸和杂志都在讲X射线,有的还刊载第一张X射线照片——伦琴夫人的手骨。
  新发现的消息传到美国的第四天,就有一位医生用X射线检查了受枪伤的病人身体里有没有留下子弹。X射线能看穿人的身体,可真是医生的好助手。伦琴也就在全世界出了名。
  许多人都认为伦琴真幸运,他偶然地得到了这个伟大的发现。实际上并不是这样。在当时,许多实验室都在研究阴极射线,许多实验室也都使用照相底片,底片感光的“偶然”现象必然会在这些实验室发生。例如,发明高真空阴极射线管的克鲁克斯,在当时就曾经遇到过放在实验室里的底片感光的现象,但是他当时正专心地制作各种放电管去研究阴极射线,而没想到会有什么看不见的射线在作怪,所以他认为是底片厂的产品质量不好,把坏底片拿回厂家去退换,使照相底片厂蒙受了不白之冤。
  还有一位美国科学家,名叫古德斯培德,在知道伦琴的发现以后,声称他在5年前就发现了X射线。原来在1890年2月22日,他曾经偶然地得到一张线圈的X射线照片。但是在这5年中间,他并没有深人研究,只是伦琴说明问题以后,他才恍然大悟。
  和古德斯培德相反,伦琴没有轻易放过实验过程中发生的似乎是偶然的现象,继续实验,深人研究,终于发现了X射线。
  后来经过进一步的研究,发现X射线原来是阴极射线轰击到物质上的时候产生的。伦琴在高真空放电管中正对着阴极安装了一个金属靶子,当阴极射线集中射到靶子上的时候,就会发出很强的X射线。这种装置现在就叫做X射线管,又叫做伦琴管。
  由于这一伟大发现,伦琴获得了科学界的最高荣誉——1901年的诺贝尔奖。他是第一个获得诺贝尔物理奖的科学家。
   他们完全搞错了
  伦琴的发现引起了世界性的狂热。实验室里所有的放电管都开动起来了,医院里也纷纷装配X射线管用来给病人检查。科学家则研究X射线的性质,想解答这个“X”。甚至有些贵族也请人在客厅里安上一台放电管,在客人面前表演X射线透视,让大家彼此看看各人的骨骼。
  法国科学家彭加勒详细地研究了伦琴的论文,他特别注意到论文中这样一段叙述:“X射线产生的地方恰好是克鲁克斯管壁上被阴极射线打中的地方,这部分玻璃管壁还发出强烈的荧光。”
  彭加勒想:X射线既然在荧光特别强的地方产生,那么,一切发出荧光的物质,是不是都会发出X射线呢?可能不一定只有克鲁克斯管才能发出X射线。
  另一位法国人沙尔听到了彭加勒的想法,立刻就去做实验。
  荧光物质是这样的一种物质,在被太阳光或其他光线照射后,它本身就会发出荧光,但是时间很短。伦琴借以发现X射线的铂氰酸钡就是这种物质。荧光物质种类很多,其中最普通的就是硫化锌和硫化钙。这类物质在太阳光照射之后,拿到黑暗处,就可以看到它们发出绿色的荧光。沙尔选用了硫化锌做实验。
  他把照相底片用黑纸包好,上面放上一小块硫化锌,然后放在太阳光下晒,让硫化锌发出荧光,晒过后把底片拿去显影。结果底片上真的出现了一个深色的斑点。这不就证明了彭加勒的设想对了吗?太阳光照射硫化锌,硫化锌发出荧光,同时发出X射线,X射线透过黑纸使底片感光,于是就出现了那块斑点。
  1896年2月10日,沙尔在法国科学院每周一次的科学报告会上作了报告。一星期后,又有一位聂文格罗夫斯基也在科学院作了同样的报告,结果和沙尔一样,他用的荧光物质是硫化钙。
  以后,法国科学院每周都有人作报告,宣布他用荧光物质得到了X射线。
  这种科学发现倒是件很简单的事!只要用一张包着黑纸的照相底片,找一块荧光物质放在上面,在阳光下晒一晒,再拿底片去显影。用不了半天时间就可以写一篇科学论文,然后到科学院去作报告。这可真是便宜事,于是,大家争先恐后地去做这种实验。
  这样一来,X射线就不那么神秘了。法国科学院院士特罗斯特宣称:“用不着那些复杂的电源和容易打破的放电管了。只要把一块荧光物质在强光下照射一下,就可以得到X射线。”
  他的结论下得太早了,那些科学家的实验也太粗糙了。实际上,他们完全搞错了。
   又一次“偶然事件”
  在从荧光物质中寻找X射线的浪潮中,有一位名叫贝克勒耳的法国科学家也被卷进去了。他的父亲老贝克勒耳是专门研究荧光物质的化学家,他对各种荧光物质也很熟悉。贝克勒耳选了一种荧光最强的物质——硫酸钾铀复盐做实验。开始,他得到的结果和沙尔一样。1896年2月24日,他在法国科学院作了题为《荧光中发生的射线》的科学报告。
  他说:“用两张致密的黑纸,把澳化银照相底片包起来……在纸上面放上一种荧光物质(硫酸铀和硫酸钾的复盐),然后在太阳光下放置几小时;底片冲洗以后,在背景上出现了荧光物质的轮廓。如果在荧光物质和黑纸之间放上钱币或有花纹的金属片,那么照相底片上就会出现这些物品的形象。”
  如果是一个粗心大意的科学家,他做了一次实验,匆忙地下个结论就完事了。贝克勒耳可不是这样的人。他报告了初步实验结果,回去继续做实验。他发现这种射线不仅能透过黑纸,而且能够穿透薄的金属,例如0。1毫米厚的铝箔或铜箔。
  2月26日,他用金属片剪了一个花样,放在黑纸包着的底片上,上面再仔细地布满硫酸钾铀复盐。当他准备把这些东西拿出去晒太阳的时候,不巧阴天了,他只好把安排好的试验品收在箱子里。
  连续几天都是阴天,太阳始终没出来。3月1日仍然是阴天,第二天科学院又要开会了,贝克勒耳只好把没有晒过太阳的试验底片拿去显影。他想,荧光物质没有强光照射是不会发出荧光的,在阴天的光线下,即使发出荧光也一定很弱;X射线是和荧光一起产生的,一定也很弱。他预计,底片不会很清楚。
  出乎他的意料,奇怪的事情发生了。冲洗出来的底片显出非常清楚的金属片花样。看来这些天,荧光物质一直不停地在发出X射线。
  贝克勒耳知道,只有在强光照射下,荧光物质才能发出荧光。停止照射后,荧光物质在一段时间里还能继续发光,这段时间叫做荧光的寿命。各种荧光物质的荧光寿命是不一样的,贝克勒耳用的铀化合物的荧光寿命非常短,只有0。01秒。因此,根据这次实验的结果,贝克勒耳断定:荧光物质发出X射线的时间和荧光寿命并不一致。
  第二天,贝克勒耳在科学院介绍了他一周来的实验情况。对于发现的偶然情况,他提出了一个新的看法:“荧光现象中产生的不可见的射线的寿命要比荧光的寿命(0。01秒)长得多。”
  过了一个星期,贝克勒耳又到科学院去作报告。这一个星期,他的实验是在暗室中做的。在暗室中,铀化合物根本不发荧光,但是照片依然很清楚,不可见的射线的强度一直没有发生变化。
  大家于是议论纷纷,彭加勒的想法可能有问题,看来荧光现象和X射线并没有关系。可是以前沙尔等人用硫化锌和硫化钙做的实验,又该怎样解释呢?
  贝克勒耳回去又用硫化锌、硫化钙等荧光物质重复了别人的实验,但是无论太阳怎样晒,也没有得到预期的射线照片。他去请教特罗斯特院士。特罗斯特也做了实验,他也没有得到什么射线的照片。
   一种新的射线
  试验继续了一个月,其他几种荧光物质并不发出什么不可见的射线来。但是保存在暗室中的铀化合物,还是在不停地放出不可见的射线。
  这时候,贝克勒耳已经确定不可见的射线和荧光没有关系,放出不可见的射线来的,一定是硫酸钾铀复盐中的某种物质,只是还不知道到底是硫酸,是钾,还是铀。
  贝克勒耳又埋头做了大量的实验。
  用纯硫酸钾做实验,照相底片没有感光,证明硫酸和钾都不会放出不可见的射线。唯一的可能就是铀了。
  换用别的铀化合物试试,照相底片果然感光了。贝克勒耳用各种铀化合物进行试验,结果都一样。
  1896年5月18日,贝克勒耳又一次登上法国科学院的讲台,他说:
  “我研究过的钠盐,不论是发荧光的,还是不发荧光的,是结晶的、熔融的或是在溶液中的,都有相同的性质——不停地发出不可见的射线。这就使我得到结论:铀是主要的因素。我用纯铀粉做了实验,证明了这个结论。”
  不是荧光物质,而是铀在不停地发出不可见的射线。但是,这不可见的射线是不是X射线呢?贝克勒耳告诉大家:不是!
  他用金箔验电器做了实验。
  金箔验电器是装在一根金属棒端的两片极薄的金箔。用皮毛摩擦玻璃棒,玻璃棒就带阳电荷,用带阳电荷的玻璃棒接触金属棒,两片金箔也都带上阳电荷。由于同性的电荷互相排斥,两片金箔就张开了。看金箔是否张开,可以检验一种物体有没有电荷。验电器带电后,如果空气干燥,电荷就不会跑掉,金箔可以张开很久;如果空气潮湿或者有带电粒子通过,金箔上的电荷会很快地跑掉而闭合起来。
  贝克勒耳用金箔验电器检查铀放出来的不可见的射线,发现张开的金箔会很快地合拢,而X射线则没有这种性质。这说明铀放出来的射线不是X射线,而是一种新的射线。这种新的射线倒有点像克鲁克斯管中的阴极射线。
  铀在不断地发出一种新的不可见的射线,这似乎又是一个“偶然”的大发现。事实说明,贝克勒耳是在一个错误的假设(认为荧光物质在发荧光的同时也发出X射线)下开始进行实验的。但是由于他有正确的科学态度,能够反复实验,尊重事实,并且通过科学分析不断修正错误的假设,结果终于完成了伟大的发现。
  至于沙尔等人开头做的实验又是怎么回事呢?这几个丢脸的实验,到后来连他们自己也说不清楚了。
  也许他们用的底片已经感过光,或者显影液有毛病;也许他们包底片的黑纸不够厚;也许是硫化物在太阳光下分解了,生成二氧化硫或硫化氢,这些气体透过黑纸把底片弄坏了……总之,他们不仔细,又急于下结论,结果造成了错误,成为科学史上的笑柄。
   居里夫妇的实验
  贝克勒耳的发现是19世纪末最伟大的发现之一,成为人类打开原子大门的钥匙。不过,他的发现不像伦琴的发现那样立刻震动了全世界,也没有引起世界各国的普遍研究。因为当时人们认为,这仅仅是研究X射线性质的一个插曲。但是,原籍波兰的法国科学家玛丽·斯可罗多夫斯卡(即居里夫人)和她的丈夫比埃尔·居里认为这个发现很重要,他们决定研究这新发现的射线。
  要研究这种肉眼看不见的射线,就得先有一种迅速而方便的侦察射线的方法。用照相底片感光的方法太慢了,太麻烦了。玛丽仔细研究了贝克勒耳的报告,她注意到了“铀盐发射出来的不可见的射线能使带电的金箔验电器放电”这段记载。
  是不是能够用验电器的放电来发现不可见的射线,并且根据验电器放电的快慢来测量放射性的强弱呢? 
  比埃尔·居里是物理学家,他很快地设计制造了一种既简单又灵敏的验电器。利用和验电器相联的灵敏检流计,可以很快地发现射线并测量射线的强度。他用铀化合物做了试验,这种验电器非常好用。
  玛丽想:除了铀以外,会不会还有别的物质也能发出不可见的射线呢?她搜集了各种各样的化合物反复进行试验,终于找到了另一种元素——钍。钍和铀一样,也会不停地发出不可见的射线。她把这种现象叫做“放射性”。铀和钍都是放射性元素。
  接着,她又仔细地研究铀的放射性。她发现
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架