《打开原子的大门》

下载本书

添加书签

打开原子的大门- 第3部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
  这时候,卡文迪许向玻璃管内送进一些氧气,再开始放电。新加人的氧气又与剩余气体化合,体积又缩小了一些。
  这个实验,卡文迪许和他的仆人轮流不停的摇着起电器,一连做了三个星期。最后,弯玻璃管中只剩下一个很小的小气泡,这个小气泡很顽固,无论怎样放电,它也不肯跟氧气化合。这个小气泡也不可能是剩余的氧气。因为最后,卡文迪许在玻璃管中加入了一点“硫肝”(草木灰的浸出液与硫磺共煮得到的肝脏色溶液,主要成分是多硫化钾),把多余的氧吸收掉了。
  卡文迪许的实验记录得十分详细。他写道:“在弯玻璃管里剩下来一个小气泡,这是由于某种特殊原因不与氧气化合而剩下来的浊气。它不像普通的浊气,而是另一种浊气,因为什么样的电火花都不能使它与氧气化合。”最后,卡文迪许作出结论:“空气中的浊气不是单一的物质,还混有一种不与氧气化合的浊气,总量不超过全部空气的1/120。”
  “啊!原来是这样!”瑞利十分激动。
  瑞利立刻把这情况告诉了拉姆赛。并且立刻在他那个以卡文迪许命名的实验室中,重新做109年前卡文迪许做过的实验了。
  拉姆赛得到很大的启发,也在自己的实验室中继续进行研究。
  他们决心学习那位科学怪人卡文迪许的精神,各自关在自己的实验室里,不把空气中的这种杂质——卡文迪许的小气泡取出来,就不出实验室的门。为了互通情报,他们靠邮递员经常交换实验结果。
重找小气泡
  问题似乎清楚了,空气中的氮气中还有未知的气体,也就是卡文迪许的那个小气泡。可以预料,这种未知气体极不活泼,密度比氮气大。但是要证实这个预料,必需得到这个小气泡,才能研究它的性质,测定它的密度。
  瑞利做实验要比卡文迪许容易多了,因为时代不同了。这时候已经发明了能产生高电压的振荡线圈,所以瑞利不必像卡文迪许那样去摇动起电器,摇了三个星期才得到一个很小的小气泡。
  为了得到更多的那种小气泡,瑞利用一个大圆底烧瓶代替玻璃弯管,倒立在碱水槽里,烧瓶内通人两根金属导线,其尖端相距只有几厘米。通上高压电,两根金属导线的尖端之间就会连续发生电火花,使瓶中空气里的氧气和氮气化合成二氧化氮。另外还有一根玻璃管通到瓶内。通过这根玻璃管,可以喷人苛性钠溶液来快速吸收掉生成的二氧化氮,也可以往瓶内送人氧气和补充新的空气。
  用这个装置,瑞利终于得到一个较大的气泡。这个气泡在电火花下也不跟氧气发生作用。为了除掉气泡中可能有的氧气,他又让它通过一根烧得赤热的装有铜屑的瓷管。这样,氧气就会跟铜反应而被除掉了。
  尽管装置有了改进,为了得到足够供实验用的气体,瑞利也干了好几个月。在这段时间里,他不断地把自己的工作情况写信告诉拉姆赛,同时也经常接到拉姆赛的来信。
  拉姆赛用的是另一种方法。他发现氮气和赤热的镁屑能发生化学反应生成氮化镁。他使已经除去水汽、二氧化碳和氧气的空气通过装有赤热的镁屑的瓷管。结果,大部分气体跟镁化合了,只剩下一小部分气体。他把剩下的气体再一次通过赤热的镁屑,气体的体积又缩小了一些。在第三次通过赤热的镁屑之后,拉姆赛把剩下的气体拿出来测定它的密度。普通氮气的密度是氢气的14倍,而这种剩下的气体,密度却是氢气的14。88倍,果然是一种比氮气重的气体。
  拉姆赛并没有满足这个初步成绩。他把这剩下的气体一次又一次地通过装有赤热的镁屑的瓷管。结果是每通过一次,气体的体积总要缩小一点,密度总要增大一点,变成氢气的17倍,18倍,19倍;最后体积不再缩小了,密度增大到氢气的20倍也不再变了。拉姆赛计算了一下,剩下的气体的体积是原来空气中的氮气的体积的1/80。
  卡文迪许的小气泡得到了。这是一种什么气体呢?这又要用光谱分析了。
  拉姆赛把这种气体装在密闭的玻璃管里,玻璃管的两端封有两根白金丝做的电极,这就是气体放电管。通上了高压电,玻璃管中的气体就闪闪发光。用分光镜检查,发现光谱中有橙色和绿色的话线。这是已知的元素所没有的话线,表明这种剩下的气体的确是一种新的气体元素。
  瑞利在两年前提出的问题,现在完全弄清楚了。用氮的化合物制成的氮气,原来是纯粹的氮气,它的密度是1。2508克每升。由空气中得到的氮气不是纯粹的,里面混有少量密度为1。9086克每升的未知的气体,因而这种不纯的氮气的密度是1。2572克每升。
  就这样,物理学家和化学家合作,又取得了惊人的发现。
  他们已经知道,这种新气体既不跟氧化合,也不跟镁化合。他们正是利用新气体的这种性质,使它跟氮气分开的。
  那么它跟哪些物质化合呢?他们做了许多试验,结果表明,这种新气体跟氢,跟氯,跟氟,跟各种金属,跟碳,跟硫,都不发生化学反应。不管加温也好,加压也好,用电火花也好,用铂黑作触媒也好,它还是不跟任何物质起反应。根据这个性质,科学家给新气体元素起了个名字叫做argon(希腊文“懒惰”的意思)——我国译作“氩”。
第三位小数的胜利
  1894年8月7日,拉姆赛给瑞利去了一封信,建议俩人一起宣布他们的新发现。经过几天准备,8月13日,他们来到了英国的科学城牛津。那时候,牛津正在召开自然科学家代表大会,各门科学家共聚一堂。他们申请出席作临时报告,要宣布一个重要的新发现。
  瑞利走上讲台,宣布他和拉姆赛发现了一种新元素。他说:“这元素到处都有,从四面八方围绕着我们,和氧气氮气一样,都是空气的组成。”他还说:“在每立方米空气中大约有15克这种气体。计算下来,在我们开会的大厅中就有几十公斤这种气体。”
  他们的报告震惊了到会的全体科学家。这是可能的吗?长期以来,人们不仅知道空气是由氧气和氮气组成的,而且还精确地测定了它们的组成比例。空气中含有0。03%的碳酸气,也早测出来了。难道还有含量高达1%的新气体,竟长期未被发现?真是不可思议!大家议论纷纷,有的赞赏,有的怀疑。
  这个问题太重要了,于是决定半年以后召开关于氩的专门讨论会。
  1895年1月31日,伦敦大学的讲堂里坐满了科学家。瑞利和拉姆赛走上讲台,详细报告了他们发现氩气的经过、实验装置和氩气的性质。
  瑞利用土烟嘴当场证明了氩气的存在,大家就更加惊奇了。
  瑞利做了一根夹层的套管,套管的外层是一根粗玻璃管,内层是8个土烟嘴接在一起,用胶粘成的一条细管子。土烟嘴就是英国人常用的那一种,表面没有上釉,因而管壁上有无数的细孔。套管夹层的两头,都用火漆封死。另外有一根管子一头通进夹层,另一头跟抽气泵相连接,可以把夹层内的气体抽掉。
  瑞利往土烟嘴管的一头通人从空气中得到的氮气,气体由另一头出来的时候就少了许多。原来一部分气体穿过土烟嘴管壁的小孔,跑进夹层,被抽气泵抽走了。
  瑞利取了1立方厘米剩下来的气体。当着大家的面称了一下,结果比1立方厘米普通的氮气重了12%~15%。
  这个实验说明什么问题呢?为什么空气中的氮气通过了土烟管会变重呢?
  解释只有一个,空气中的氮气不是纯粹的气体,而是氮气和某种更重的气体的混合物。在通过土烟管的时候,虽然它们都会透过土烟管的细孔,被抽掉一部分,但是轻的气体透过得快,重的气体透过得慢,结果在剩下的气体中,氮气占的比例减小了,氩气占的比例则大大增加了。
  物理学家瑞利当众用物理方法——扩散法,也就是他在前几个月中研究成功的新方法,分离出空气中的氩气,证明了这种新气体的存在。
  接着拉姆赛也走上了讲台,把他们用不同方法制成的氮气,当众做了各种表演实验。
  在事实面前,大会的参加者公认了他们的新发现。
  氩气的发现是从1。2508和1。2572之间的差数开始的。小数点后边第三位数字的差别引出了氩气。
  人们不禁想起100多年前的卡文迪许,他实际上已经捉住了氩气——一个小气泡,并且指出这个小气泡不跟氧气化合。但是他那时候还没有称量千分之几克的精密天平,也没有光谱分析法,他只好把这个小气泡放走了,没有能够真正的发现氩气。
  19世纪末氩气的发现是精密度的胜利,是天平的胜利,是小数点后边第三位数字的胜利。
从天上来到人间
  氩气的存在得到了公认。但是这仅仅是开始,拉姆赛还在继续研究氩气的各种性质。
  1895年2月1日早晨,他接到伦敦化学教授亨利·梅尔斯的一封来信。信中说:“不知道您是否试验过氩气跟金属铀的反应?如果没有的话,我认为您应该试一试。1888…1890年间,美国地质学家希莱布兰德曾经把钇铀矿放在硫酸中加热,结果冒出来许多气泡。这种气体既不能自燃,又不能助燃。希莱布兰德当时认为这是氮气。不过也可能是氩气。我认为应该检查一下,说不定钇铀矿中含有铀和的氩的化合物!”
  拉姆赛把手头的实验告了一个段落以后,立刻根据亨利·梅尔斯的提示进行研究。他派人找遍了伦敦的化学药品商店,才买到了1克钇铀矿。
  一个新的实验开始了。拉姆赛的助手特莱凡斯把钇铀矿放在硫酸中加热,气泡冒出来了,收集到了几立方厘米的气体。
  拉姆赛和特莱凡斯又用了整整4天的工夫,把气体中能跟其他物质化合的杂质除掉。实际上杂质很少,大部分是跟任何物质都不起反应的气体。
  气体装进前面讲过的那种放电管中。通上高压电,气体放出光来。
  拉姆赛用分光镜作检查的时候,本来以为会看到氩的谱线,但是出乎意料之外,他看到的是一条黄线和几条微弱的其他颜色的亮线。
  拉姆赛想,可能是白金电极上沾了点钠盐,或是分光镜出了毛病。他仔细作了检查,并没有这一类问题。
  那么就应该检查一下,这条黄线是不是与销的谱线重合了。拉姆赛于是故意在放电管内放进去一点钠,重新封好再观察它的光谱。
  结果光谱中出现了钠的谱线,但是以前看到的黄线还在老位置上,在钠的谱线旁边。毫无疑问,这条黄线不是钠的,而是属于某一种别的物质的。这是一种什么物质呢?
  拉姆赛把他所知道的各种物质的光谱都重新回忆了一遍,没有一种跟它相似。经过长久的思索,他记起了詹森和罗克耶在27年前发现的太阳上的氦。氦的光谱不就是黄线吗!如果这条黄线跟那条黄线重合的话,那么钇铀矿中放出来的气体就既不是氮,也不是氩,而是太阳元素——氦了。
  太阳元素就这样容易地找到了?这个结论是不是太大胆了?拉姆赛是十分严谨的科学家,他决定请他的朋友,当时英国最好的光谱学专家克鲁克斯(他曾经用光谱法发现了元素铊)帮忙。他派人把放电管送到克鲁克斯那里,并且附了一封信。他没有肯定说这是氦,而是说他找到一种新气体,建议叫做krypton(希腊文“隐藏”的意思)——我国译作“氪”,请克鲁克斯仔细确定一下新气体的谱线的位置。
  1895年3月23日早晨,拉姆赛正在自己实验室中研究这新气体的光谱,邮递员送来了一份电报,里面写着:
  “氢——这是氦,请过来看。克鲁克斯。”
  太阳元素真的由天上来到人间了!
  拉姆赛立刻来到克鲁克斯那里,用克鲁克斯的精密的光谱仪仔细观察。的确,这气体正是氦。
  当天,拉姆赛给法国科学院院长贝特罗拍了个电报,通知他说:氦在地球上发现了。
  真是无巧不成书,就像詹森和罗克耶几乎同时发现太阳上的氦一样。在拉姆赛发现氦的两个星期以后,瑞典青年化学家兰格列也在党铀矿中找到了氦。他的老师克利夫把他的发现也报告给同一个贝特罗院长,发信的日期是1895年4月8日。
(二)
新任务和新问题
  拉姆赛是世界上第一个拿到了太阳元素的化学家。当然,他立刻开始研究氦的性质,用氦作了各种各样的实验。
  太阳上的氦是没法拿来称的,天文学家们猜想,氦是一种很轻的气体。拉姆赛第一个称出了氦的密度,证明天文学家的预测是对的。氦果然是很轻的气体,空气比它几乎重6。5倍。只有氢比氦还轻,其他气体都比氦重。
  拉姆赛试验了许多物质,看看它们会不会跟氦发生反应。结果证明,氦和氩一样,不跟任何物质化合。它们都是“惰性气体”。
  能不能在空气中找到氦呢?氦既然是不跟任何物质化合的气体,它必然会跑到空气中去。
  拉姆赛开始了新的搜索——在空气中寻找氦。
  如果空气中真有氦的话,只要把空气中的其他气体都去掉,把氧气去掉,把氮气去掉,把新发现的氩气也去掉,剩下的就是氦气了。
  这工作的头两步——除去氧气和氮气,拉姆赛在寻找氩气的时候已经作过了。只要把空气通过装有赤热铜屑的磁管,空气中的氧气就会跟铜反应,生成氧化铜而被除掉,剩下的就是氮气和氩气的混合气,里面可能有氦气。
  空气中的氮气通过装有赤热镁屑的磁管,氮气就会跟镁反应,生成氨化镁而被除掉,剩下的就是拉姆赛和瑞利共同找到的氩气了。他们找到的氩气中会不会就有氦气呢?氦气跟赤热的铜和镁也不起反应的,空气中如果有氦气的话,它必然会混在氩气中。
  怎样把氦气和氩气分开呢?要是能找到一种只跟氩气化合而不与氦气化合的物质,问题就解决了。可惜就是找不到那样一种物质。因为两者都不跟任何物质化合。这就是说,分离氧气和氮气的那种方法,不能用来分离氩气和氦气。
  看来
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架