《格式塔心理学原理》

下载本书

添加书签

格式塔心理学原理- 第28部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
态度 
    此外,点的外形通常要求观察者具有明确的态度(attitude)。人们可能会长时间地注视一张白纸,而没有意识到上面有一个点;只有当人们开始产生怀疑,仔细地审视那张纸的时候,他才会发现纸上有一个点。这究竟意味着什么?倘若不抱一种批判态度的话,那么,与那个点相应的刺激的异质性就不足以打破视觉环境中充分界定的单位的同质性。这就需要有一种新的因素,那便是态度,因为态度使那个点得以存在。如果异质性的尺寸更大一点的话,那就会使一个可见的物体跃然纸上,而用不着特定的态度。于是,我们习得了两个新事实。首先,我们发现场组织在某些环境中是有赖于态度的,那就是说,力在环境场中没有其起源,其起源存在于观察者的自我中,这是一种新的标志,说明我们单单研究环境场的任务是有点矫揉造作的,也说明只有当我们研究了把自我包括进其环境中的整个场以后,我们才能完全理解它的构造。 
为什么点是不稳定的 
    其次,我们必须提出这样的问题,为什么单个的点是这样的不稳定,为什么它们不可见。假定以此方式来阐述的话,该问题只能得到不合逻辑的回答,正像老一代的心理学家所提供的答案那样,他们会用末被注意的感觉(non-noticed sensations)这一假设来解释这种事实(参见第三章)。但是,这种解释的不确切性在我们的例子中是显而易见的。当我们未能看到一个点时,我们却看到了一个同质的面,也就是说,如果它是白色表面上的一个黑点,那么,当我们没有注意到那个黑点时,我们便只看到白色。对此,“末被注意的感觉”这一假设是无法予以解释的,因为不去注意某种黑色并不等于注意到了某种白色。我们刚才说过,我们的问题阐述得很糟。上述的最后一个观点为我们更好地阐释提供了一条线索。我们不是去问为什么我们看不到某种东西,也就是为什么看不到那个点,而是应当问为什么我们看到了其他的某种东西,也就是看到了同质的表面。为了寻找答案,让我们回到我们前面描述过的威特海默…贝努西的对比实验上来。我们在该实验中看到,一个强有力的统一整体如何抵御了在颜色上使该整体变得异质的那些力量(参见边码PP.134f.)。 
    在我们目前的例子中,存在着一种打破表面一致性的力,如果这种力无法产生这种结果,那么失败肯定是由于其他一些更强的力,也就是使统一的区域变得一致的那些力引起的。后面的这些力在整个单一表面的同质着色中有它们的起源,在这个单一的表面中,点仅仅是异质的而已。围绕着这个点,同质过程以闭合的接近性(close proximity)而发生,并以邻近性(contigui…ty)遍及该面的其余部分。我们不久将会看到,相等过程的接近性产生了作为邻近性的同样一些力。因此,在我们的例子中,统一的力一定是很强的,而单一的异质性往往不会强大到在没有附加力量的情况下足以克服这些统一的力。 
    我们讨论的一个结论是,看到一个点不是一种原始的成就,而是一种高级的成就。只有在特别发达的系统中,这样一种轻微的异质性才能产生清晰性;在其他一些系统中,这样一种轻微的异质性将产生一种简单的同质场。 
(2)线 
    现在,让我们来考虑一下线条。普通的线条,不论是直线还是曲线,都被视作是线而非区域。它们虽有形状,但是却缺乏内部和外部之间的差别,鉴于此,它们成为我们一般例子中的另一个特例。从几何学角度讲,我们画的每一根直线都是一个矩形;但是,从心理学上讲,并非如此。另一方面,形状是线的重要特征,对此断语,我们将在稍后用实验证据来证明。 
闭合的轮廓图 
    然而,关于线的考虑引进了一个新观点。如果一根线形成了一个闭合的图形,或者几乎是闭合的图形,那么,我们在一个同质背景上便不再仅仅看到一条线,而是看到了由线围起来的面的图形。这个事实如此熟悉,遗憾的是它从未成为特殊研究的课题,这是就我了解的情况而言的。然而,一旦我们剥夺了它的熟悉性的话,它仍是一个令人吃惊的事实。因此,我们要求对下述的说法有一个有效的证明,即由轮廓包围起来的图形是一个与轮廓外面的场不同的实体,轮廓外面的场在其他一切方面产生了同样的刺激。我们拥有一些方法,这些方法有助于确立轮廓图形与其背景之间的差别,但是,这些方法尚未用于我们的问题。我们可以对一个小图形的阈限进行测量(这种小图形产生了我们原始图形的内部轮廓或外部轮廓),测量的方法是把这样的图形投射到有轮廓的面上去,并在幻灯和面之间安放一个节光器,就像亨普斯特德使用的那种实验装置一样(参见边码P143)。如果该小图形要求节光器上面的裂口开得大一些,以便使轮廓内部的东西比轮廓外部的东西更为可见的话,那么,我们便证明封闭区域比之它的环境具有更大的聚合性(cohesive-ness),这就使得在封闭区域上面产生一个新的图像更加困难。遗憾的是,从未做过这样的实验,尽管从两个相似的实验中我们的假设结果似乎是可以预见的。这两个相似的实验,一个是由盖尔布和格兰尼特做的,而另一个则是由格兰尼特做的。 
轮廓图的动力原因 
    但是,当我们把这种差别视作实际的差别时,我们的主要问题便出现了。我们想知道这样一些原因,不仅是将轮廓从场的其余部分中分离出来的原因,与此同时,还想了解将封闭图形从其环境分离出来的原因。我们的非连续性原理肯定解释不了这一现象。这是因为,轮廓和画在轮廓上的那个面之间的非连续性,不论在向内的方向还是在向外的方向上都是一样的。根据我们的陈旧原理,我们只能解释为什么我们把线看作线,也就是说,看作与其余部分相分隔的一些单位,但是,当我们看到被一条线围起来的区域时,或者看到由一些线组成的图形时(它们与场的其余部分相分离,而且不是以同样的方式与轮廓相分离),我们所关心的便不是这种情况了。尽管刺激的非连续性仍然具有分离的效果,而且迄今为止与我们的定律相符,但是,这种分离是不对称的。那么,这种不对称的原因是什么? 
    闭合因素 
    遗憾的是,上述问题未被处理。如果仅仅声明一下这是一种疏忽,那就会在读者心中引起怀疑,怀疑我们的一般原理是否有效。因此,我们将设法指出几种因素,它们也许能对这种现象作出解释。我们提出的第一点是这样一个事实,即闭合的或差不多闭合的线或线条图形具有这种特征,而这种特征在不闭合的线条中是缺乏的。这一情况表明,组织过程有赖于其结果的特性,这是严格地符合言简意赅(pragnanz)的普遍规律的。闭合区域似乎是自足的、稳定的组织,这一结论将在后面单独阐释,当然是以特定的实验为基础来阐释。 
    良好形状的因素 
    我们也许会设法找出是否存在闭合的线条或线条图形,这些闭合线条或线条图形比其他线条或图形更易被视作线条。尽管没有做过实验去确定这一点,但我仍然倾向于认为这些差别是存在的,例如,一个圆将更易于被看成是一条线而不是一个三角形,而一个三角形则表现为一个三角形的面,而不像三条线彼此相交于它们的终端点。如果这种说法是正确的话,那么,我们便可以尝试将这一事实与我们的良好形状定律  (law of goodShape)联系起来。作为一条线,圆是最好的图形了。它的每一段都包含了整体原则。可是,三角形却并不如此,三角形中没有一块地方要求按照三角形形成的方式继续下去。恰恰相反,三角形的每一条边的每一部分要求按其自身的方向继续下去,而三角形的三只角实际上却使这种继续方式中断了。因此,可以这样说,作为线段来说,三角形的轮廓并不“简单”。我们可以暂时下这样的结论:三角形的轮廓也是不稳定的。与此对照,三角形的面,尤其当它是等腰三角形或等边三角形时,它的轮廓就是简单的,而且具有对称性。因此,对三角形整个面的分离来说,原因可能在于对称性,它应当由稳定性相伴着。 
    简要地说,作为一个暂时性假设,我们提出如下观点:轮廓将图形围起来,而不是作为一条线将自己与面的其余部分相分离,因为这是更好的组织,也是更稳定的组织。 
    我们不想以此解释来引进一个新原理。这是因为,我们在此之前已经看到,形状因素作为稳定因素,将组织成一个场,以对抗刺激的非连续性效应。然而,我对我的假设并不感到十分满意。不只因为它缺乏实验证据,而且因为它还不够清楚和明确,它并未陈述沿着轮廓线的实际力量,也未陈述这些力量的不对称作用。 
由线条图样产生的组织 
    但是,我们必须让这个问题停留在那里。事实是,区域可以统一起来,也可以通过闭合线条与同质场的其余部分相分离。这一事实有助于我们以新的方式研究形状因素。我们现在将考虑特定的原理,按照这些原理,线条图样(line pattern)产生了组织(线条图样仍是我们一般例子中的一些特例):该场被分成两个不同的部分,每一个部分本身是同质的或实际上是同质的。现在要讨论的一个图样满足了这一条件;这个场由连续的白色部分(纸张的背景)和连续的黑色部分(一些线条)所组成。所有这些图样是由一个大黑块和移去其中一些黑色而组成的。 
    我们的问题是:如果已知某个线条图样,那末我们将看见什么图像?支配这种关系的一般原理是什么?来自柏林实验室的两篇论文包含了丰富的资料,其中一篇论文由戈特沙尔特(Gottschaldt,1926年)所作,是一个不同问题的研究的组成部分,另一篇论文与我们的问题直接有关,由科普费尔曼(Kopfermann)所作,我们将从后者的论文中选择一些例子。 
    当我们的线条图样把面的一部分与其他部分分开时,一般不会产生新问题。我们现在要考虑的图样是这样的,其中分开的区域本身包含着一些线条,它们从几何学角度上把分开的区域分成两个或两个以上较小的区域。在这种情况下,我们将见到什么?在较为简单的条件下,当我们不是处理线条图形,而是处理面的图形(surface figures)时,我们也曾偶尔遇到过同样的问题,如果封闭的同质区域具有特定形状的话,那么,它将不是作为一个图形而出现,而是作为两个交迭的图形而出现(见图14,边码p.141)。 
    单和双的问题 
    让我们把这一例子作为出发点,我们可以提出这样一个问题:一个轮廓图在什么时候被看作是一个在其内部具有一些线条的图形,在什么时候将被看作是两个或两个以上的图形呢? 图21和22为上述两种情形提供了例子;在第一个图中,一个人见到一个矩形,中间有一根线穿过,可是在第二个图中,一个人见到两个相连的六边形。原因很清楚:在第一个图中,整个图形比之两个部分的图形来是一个更好的图形,而在第二个图中,情况恰好相反,两个部分的图形比之整个图形来是更好的图形。此外,在第一个图中,矩形的顶边和底边都是连续的直线,可是,如果两个不规则四边形都被看到的话,那么同样的直线就被中断了。 
    良好的连续 
    我们已经遇到了第一个因素;第二个因素意味着(正如我们先前指出过的那样),一条直线与一条虚线相比,前者是一个更加稳定的结构,因此,如果其余情况均相同,组织将以这样一种方式发生,即一根直线继续成为一根直线。我们可以这样来概括:任何曲线将按其自然方式发展,一个圆被看作为一个圆,一个椭圆被看作为一个椭圆,等等。威特海默(1923年)把组织的这一方面称之为“良好连续律”(Law of good continu-ation)。我们在实际的组织中将会遇到许多这方面的例子。这里,我们补充另外一个例子,也就是图23所示的图形,它取自彪勒(Buhler,1913年)的研究,从图中可以看到外力阻止了良好的连续。结果产生了美学上令人不悦的印象,这是因为四个半圆的恰当连续遭到破坏的缘故。 
    如果在线条图样中,单(unum)和双(duo)的组织在区域形状和线条连续方面都是同样良好的话,那么两者之中有没有优先者呢?科普费尔曼认为是有的。在有利于单一组织方面,人们优先选择单一的全封闭图形,也即全封闭轮廓。但是,由 于科普费尔曼的图形都是这样的,以至于其他一些因素,特别是良好连续的因素.都处于对单一组织的有利方面,结果,她无法证实她的观点。实际上,要产生能够满足我们条件的图样(见图24),如果说不是不可能的话,至少也是极端困难的,即便是这些图样中最好的图样,结果也是模棱两可的。因此,我无法肯定这样一种因素是否存在。 
    双重组织 
    我们对于单一组织和双重组织的区分,即便我们在双重组织中把看到两个以上图形的情况也包括在内,仍不能适当处理实际组织的多样性问题。一方面,大多数双重形状同时具有单一性质,另一方面,双重形状可能有各种类型。例如,两个毗邻的六边形(见图22)的双重图形,同时也具有一种明确的整体性质,图25也一样,尽管看上去像两个部分相互交迭的三角形,但仍然具有一种明确的整体性质。一个组织的单和双可能彼此和谐一致,确实,这样一种和谐一致可以用无限多样的方式来达到。在一个极端上,我们具有单一的支配性,双重性成了 整体的一些完整部分,正如图8所示的那样。可是,在另一极端上,双重性占居支配地位,单一性或多或少成了一些部分的偶然结合,如图26所示,前面举的两个例子(图22和图25)则处于两者之间的某处。双重性本身也可
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架