《夸克与美洲豹 作者:[美]盖尔曼》

下载本书

添加书签

夸克与美洲豹 作者:[美]盖尔曼- 第27部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
    对于杂化超弦理论有关粒子方面的内容,我们能作出什么一般性观测呢?要回答这个问题,我们得谈到“弦”(string)这个字和前缀“超”(super…)的意义。弦这个字指出,这个理论可以用小环(tiny loop)来描述粒子,而不用点来描述。每个环的典型尺度大约是长度的基本单位,约为10…33 厘米。这些环是如此之小,所以在很多情形下我们可以等价地用点粒子进行描述。实际上有无数种点粒子。这些不同的粒子如何与其他粒子发生关系呢?在特殊情形下,那些低能部分的粒子如何可以与普朗克质量差不多(或大一点)的粒子发生关系呢?
    用小提琴的弦作类比十分恰当。小提琴的弦有一个最低的振动模式,还有无数更高的音频振动模式(谐波)。在量子力学里,能量是频率乘以普朗克常数(ε=hv)。低质量部分的粒子,可以形象地设想为是超弦理论中出现的各种弦环的最低振动模式。而质量与基本质量单位可以相比的粒子,则可表示为其他一些最低的振动模式,而较重的粒子则表示较高的振动模式,如此下去以至无穷。前缀“ 超”( super… ) 指出这个理论有近似的“ 超对称性”(supersymmetry),这意味着粒子表中的每一个费米子都有一个相应的玻色子,反之亦如此。如果粒子系统的超对称性是严格精确的,每个费米子一定有与其相关的玻色子精确相同的质量。但是,超对称要设法使自己“破缺”(对此我们尚了解得不够清楚),这使得费米子和相应玻色子的质量不一样,我们把这种现象称为“超隙”(supergap)。每一对费米子…玻色子超隙并不完全一样,但可能常常有相同的数量级。如果这超隙有些类似质量的基本单位,那我们就永远不可能在试验室里直接观测到已知基本粒子的超级搭档(superpartners)。超级搭档和新的加速器
    但是,如果与超隙等价的能量只有102—103GeV,那么在未来的几年,应该可能由CERN 新建的加速器观测到这些超级搭档(如果更高能量的超导超级碰撞器建成,观测到的机会要更大一些)。某些实验结果的理论分析指出,超隙的大小可能正好和SSC(superconductingsupercollider,超导超级碰撞器)的能量搭界,还可能与CERN 的新加速器能量搭界。假设这些迹象是正确的,我相信发现超级搭档的前景,是建造新加速器所有具体动机中最令人激动的一个。(还经常有探索未知世界不太确定的目的,以及看一看是否会有什么未预见到的现象出现。)
    应按照两个不同的模式,指定假定中的超级搭档的名称。当已知粒子是一个玻色子,相关的费米子则在名称的尾部加一个意大利文表示“小得多”的词尾“…ino”,这种模式首先由费米命名中微子(neutrino)。这样,光子(photon)预期的搭档就是光微子(photino),引力子(graviton)的搭档则为引力微子(gravitino),如此等等。既然传递弱相互作用的带有电荷的玻色子常称为W+和W…,那么预言中相应的费米子就需要一种奇怪的名称“W 微子”(winos)。当我们已知的粒子是一个费米子,其玻色子搭档就用与费米子相同的名称,但加一个前缀“s”(估计是代表super——超)。这样,我们就得到了一些奇怪的术语,如squark、selectron。(我应该强调,我对这些名称不负责任,虽然我必须勉强承认,当大家对已知玻色子的费米子选择后缀为…ino 时,我也在场。)
    既然一个玻色子的超级搭档是一个费米子(以及相反的情形),那么这两个超级搭档的自旋一定总是不同,一个是整数而另一个是整数加1/2。事实上,两个自旋必需有1/2 的差别。希格斯玻色子(或希格斯子,Higgson)的自旋是0,它的搭档(higgsino)的自旋为1/2。费米子的3个家族自旋为1/2,那么它们的搭档(squark、selectron 等等)的自旋为0。量子(胶子gluon、光子photon,X、W 和Z°玻色子)的自旋为1,它们的搭档胶微子( gluino)、光微子等等的自旋则为1/2。引力子(graviton)的自旋为2,它的搭档引力微子的自旋为3/2。在超弦理论中,标准模型被耦合到一个更大的可以重整化理论之中。这一理论我们可以称为超标准模型(superstandardmodel),它包含12个量子,同样的费米子,某些higgsons 以及所有这些粒子的超级搭档。超级标准模型的有效的预言,为检验超弦理论提供了大量的实验。趋近普朗克质量
    当能量增加到比低质量部分(即可直接在实验中探测的部分)的能量高许多时,超弦理论预言胶子、电磁和弱相互作用在强度上彼此趋近,还显示它们的紧密关系。归纳现在的高能实验结果,得到了超对称破缺预言中提出的相同结论(如超隙不会太大)。这样,对超对称来说已经有了某些直接的证据。与此同时,费米子间的对称性也是不可否认的。现在让能量继续增加。在能量间隔刚刚低于普朗克质量,并在普朗克质量邻近处显示出第一个激发模态之前,超标准模型可否暂时让位给一个“大统一理论”(grand unifiedtheory)的超对称形式。
        虽然我们之中的任何人都不可能活着见到在实验室里产生与普朗克质量(mp≈1019GeV)①相比较的能量,但是,这种能量在宇宙开始膨胀的宇宙婴儿时期,一定出现过。时间的基本单位tp≈10…44 秒,它可以用来测量这样一个时期:小小的宇宙经历了所有超弦理论预言的物理效应。那么,宇宙有没有任何遗留下来的证据,以便今日来检验超弦理论的有效性呢?超弦理论预言的效应从遥远的时代至今,是否会留下痕迹?
    理论物理学家尚未能确信会不会有痕迹遗留下来。在膨胀开始一个很小的时间间隙后,几乎肯定有一个暴胀(inflation)时期,这是一个宇宙爆炸似的膨胀时期,接着是延续至今和仍将继续下去的平缓的膨胀。暴胀几乎毁掉了宇宙极早期的许多特征,因此也可能扼制了超弦理论的许多推论。但是,强加于暴胀的一些制约,也许毕竟可以用宇宙学方法使理论得以检验。同样的道理可以用于宇宙的初始条件,按照哈特尔和霍金的建议,初始条件与统一的量子场论密切相关。假定他们两人的想法和超弦理论都正确,那么初始条件就被唯一地确定了,但它对宇宙后来的影响被暴胀过程过滤了一次。解的明显多重性
    除了超弦理论特征能量尺度与基本粒子实验可得到的能量相差太大以外,还有一个理由使少数物理学家对超弦理论能否检证表示怀疑。这主要是由于杂化超弦理论的方程有非常多的近似解。别的暂时不说,只说每一个这样的解都提供了一个粒子表,其质量均近似为零。我们似乎可以假定,当非零的小质量作了修正后,这些粒子和理论中组成低质量部分的粒子相同。于是,每个近似解的零质量粒子的主要内容可以与超标准模型相比较。某些解还的确取得了一致:低质量部分包含超标准模型和几个额外的粒子如引力子和引力微子。
    麻烦的是,已经发现有几千种这样的近似解,而且看来还会不断有新的近似解发现。因此,被观测到的情形与超弦理论的一个解进行比较,并非根本不可能,但是,对所有其他解又如何处置呢?这儿有几个可能的答案。第一,我们当然可以认为这理论错了,但仅
    从有过多的近似解就作这样严厉的结论,我看不出有什么道理。第二种可能性认为,困难完全起源于近似性(这种说法并不完全公正,只不过很方便),因此一旦改进了这种近似性,那么除了一个解以外,其他所有解均可认为是虚假的,并予以抛弃(这种可能性的一个修正形式认为,仅仅几个真正的解可以保留)。作用
    为讨论多重解问题,还有一种可能的办法是引入一个非常重要的量“作用”(action),通常用符号S 来表示。很早以前在经典的牛顿物理学中引入“作用”时,它就很有用处,但到量子力学出现以后,它就不仅是有用,而且成了不可缺少的量。作用的量纲等于能量乘以时间;而普朗克常① mp 代表普朗克质量,这个数值是译者附加上的——译者注数除以2π,即h,也有相同的量纲,因此可以把它当作作用的基本单位。我们知道,量子力学中粗粒化历史的概率,是把所有成对的完全精细历史量D 值加遍。量子力学中的一个理论对每一个精细历史指定一个特定的S值,正是作用的这个值(加上初始条件)决定了D 的值。很清楚,我们高度希望在杂化超弦理论中找到确定S 值的公式。但至今为止,这还只是一个难以达到的目的。今日我们能做到的,如我以前的一位学生茨威巴赫(Barton Zwiebach)所得的一个结果一样,似乎只能把作用表示为一个无穷级数之和,而对这种系列求和仍然是一个难以完成的任务。
    如果把上述情形,与我已去世的同事费曼在1954 年完成的一次学术辩论作一比较,我们也许会得到启示。(1954 年,我访问加州理工学院并决定在这儿工作时,费曼和我讨论了他的计划。事实上,我自己也开始了一个与此类似的计划。)费曼开始设想,假定爱因斯坦在1914 年前后,他睿智的洞察力并没有深入到引力的本质中去,也没有了解到引力必需服从广义相对论的不变性原理并与时空几何有关。这时狄克①问道:有没有可能不用这种洞察力,用强迫的办法建构这个理论?他发觉可以这样。但是,作用以一种无穷级数的形式出现,而对这个级数求和在没有几何观点和不变性原理的情形下,实际上不可能。而(广义相对论的)原理可以直接得出答案,既不需要任何强迫,也不需要无穷级数。事实上,只要爱因斯坦在广义相对论的基础上了解到,为了描述引力他需要什么公式,他是可以从他的一位老同学格罗斯曼(Marcel Grossman)得知有关数学知识,并写出作用的公式,而且,由这个公式可以推出86 页的公式。
    也许超弦的情形有些相似。如果理论物理学家了解超弦理论的不变性原理,他们也许可以写出短序列的作用公式,而用不着诉诸对无穷级数求和。(当我们等待这个发现时,我们将怎样称呼这个原理呢?陆军元帅相对论(Field marshal relativity)?大元帅相对论( Generalissimorelativity)?当然,这个理论会超过相对论。)但无论如何,对超弦理论有了深刻的了解,我们就会联手前进去发现作用S 的公式。如以前曾注意过的一样,自洽的靴袢原理(“bootstrap”principle)曾首次激励过超弦理论,这种思想是一个简单而强有力的思想,但也并没有用正确的语言详细描述,因而未能发现作用或作用后面完全的对称原理。当超弦理论用量子场论的语言来描述,当它的作用和对称性被发现了,那超弦理论就真的已经成熟了。有效的作用
    从作用开始,在原则上我们可以算出一个相关的量,我用S符号表示。理论物理学家可以给它一个“量子修正欧几里得化的作用( quantumcorrected Euclideanized action)这么一个名称。这个量是作用S 修正型的平均值,这儿说的修正涉及时间变量特性的修改。我们可以把量S 看成是“有效作用”(effectiveaction),它对理论的解释起着很大的作用。首先,哈特尔和霍金可以用S表示他们提出的宇宙初始条件。其次,如果① 费曼的朋友常亲热地称他为Dick——译者注超弦理论真的有许多解,我们可以用量S寻求指导。由于某种原因,对一些不同解计算出的这个量,必须在这些解之间作出区分。由经典物理学可以推论出,最小作用原理为详细阐述经典动力学提供了一个美妙的方法,有些理论物理学家可以认定,符合物理学宗旨的正确解——表述真实宇宙性质——也必将是有效作用S的最小值。这的确是挑出正确解的正确判据。既然我们现在处理的是量子力学,那么,对宇宙来说,最后的结果也许根本没有单个的正确解,而只有一个概率的情形,所有真正的解只是可能的候选者;每个候选者都有自己的概率,概率变小时S的值就增大。事实上,用S表示的概率公式是一个衰减的指数函数,由图10…1 的一条曲线来描述。具有S最小值的解,因此就具有表征宇宙的最高概率,而其他解也将具有某种机会。解的分枝树应用到宇宙的特定解,将决定基本粒子系统的结构。事实上还可以决定更多的事情。但应足够注意的是,它甚至可以决定空间的维数。思考杂化超弦理论空间情形的一条思路是:理论从1 维时间、9 维空间的空时开始;这样,不同的解对应于某些空间维的坍缩(collapse),留下的仅是可以观察到的维。如果应用S的概率解释,那么我们宇宙的三维空间性质,是超弦方程组一个特定解(例如,包含特定粒子集的特定费米子家族的数目)偶然出现的结果。
    这样的一个概率情形,是解决超弦方程组许多外观解之谜最有兴趣的可能结果,假定它是一个正确的结果,那么我们就会想到宇宙粗粒化历史可供选择的分枝树。每一个分枝是一个概率,从第一个分枝开始就选择了超弦方程组的一个特定解。
    超弦理论的预言,无论它们是否依赖解的这样一个概率“选择”(choice),这些预言都必须与我们的3 维空间的经验和基本粒子系统所有特性相比较。
    如果杂化超弦理论在所有可以检验的情形下,都做出了正确的预言,那么,基本粒子的基本理论问题就大概被解决了,宇宙态的演化动力学也将被知道。但是,宇宙历史的描述依赖于初始条件,同时也依赖于宇宙历史树的所有分枝的偶然结果。多宇宙迄今为止,我们讨论的量子宇宙提出了宇宙可供选择的历史,但我们将宇宙视为一个单独的整体,它拥有所有各处的物质。但是,量子宇宙学还在不断改变,还充满一些很有趣的推测性的思想,因此量子宇宙学还存在许多问题;而且这些思想
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架